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the isolates was performed by 16 S rDNA gene sequencing. 
Only isolates UFSC-M4 and UFSC-M8 were able to nodu-
late C. mucunoides. Among rhizobia capable of nodulating 
V. sativa, only UFSC-M8 was considered efficient. It was 
found the presence of more than one growth-promoting 
attributes in the same organism, and isolate UFSC-M8 pre-
sented all of them. Isolates were classified as belonging to 
Rhizobium, Burkholderia and Curtobacterium. The results 
suggest the inoculation of Vicia sativa with strain UFSC-
M8, classified as Rhizobium sp., as a promising alternative 
for the revegetation of coal mining degraded areas.

Keywords Biological nitrogen fixation · Rhizobium · 
Degraded areas · Symbiotic efficiency

Introduction

Coal is considered one of the most abundant fossil fuels on 
the planet, and represents an extremely important source of 
energy worldwide (WEC 2013). In Brazil, coal is mostly 
located in the states of Rio Grande do Sul (RS) and Santa 
Catarina (SC), with reserves of approximately 32.6 billion 
tones. In those regions, coal-mining activities were origi-
nally performed in open, improperly developed pits, there-
fore leading to large environmental impacts (Rocha-Nic-
oleite et al. 2013). In the South of Santa Catarina, 6.700 ha 
and 2/3 of the water streams suffer from heavy pollution 
due to acid mine drainage (AMD) or aquifer residue dep-
osition (Alba 2007). As a result, soil fertility is severely 
impacted, thus leading to vegetation loss, landscape modi-
fications, and overall decrease in biodiversity (Soares et al. 
2008).

Conventional physical and chemical treatments used 
for soil recovery present several limitations, such as high 
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affecting approximately 6.700 ha. Re-vegetation is an alter-
native for the recovery of these areas. Furthermore, the 
use of herbaceous legumes inoculated with nitrogen fixing 
bacteria is motivated due to the difficulty implementing a 
vegetation cover in these areas, mainly due to low nutrient 
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Isolates characterization was assessed by the production 
of indole acetic acid, ACC deaminase, siderophores, and 
inorganic phosphate solubilization. The classification of 
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costs and the possible irreversible changes in soil properties 
(Delgadillo et al. 2011). One potential low cost alternative 
for soil and landscape recovery lies on re-vegetation using 
leguminous plants (Nascimento and Biondi 2008; Siqueira 
et al. 2008). Some studies have been developed with legu-
minous species for the recovery of degraded soils in Bra-
zil (Melloni et al. 2004; Carneiro et al. 2008; Nunes et al. 
2015; Moura et al. 2016).

Vicia sativa (vetch) and Calopogonium mucunoides 
(calopo) have shown great potential for soil recovery 
(Rocha-Nicoleite et  al. 2013). These herbaceous plants 
(Fabaceae) are able to grow in low fertility soils presenting 
high acidity and high aluminum concentrations (Seiffert 
et al. 1985; Calegari et al. 1993). Nevertheless, its growth 
is severely affected by low nitrogen, which limits its effi-
ciency in the recovery of degraded areas (Ferrari and Wall 
2004).

The use of plant-growth-promoting bacteria (PGPB) 
might be a useful strategy to increase plant growth and 
resistance to multiple stresses (Glick 2014). In this 
sense, rhizobia play a significant role promoting plant 
growth through its ability to form a symbiotic relation-
ship and provide nitrogen to the host plant (Glick 2012). 
Moreover, many rhizobia also possess other plant-growth 
promotion abilities such as phosphate solubilization, 
siderophore, ACC (1-aminocyclopropane-1-carboxylate) 
deaminase, and IAA (indole acetic acid) production that 
play important roles towards plant growth and develop-
ment (Glick 2014). V. sativa and C. mucunoides usually 
form a symbiotic relationship with rhizobia belonging to 
α-Proteobacteria. In Brazil, the recommended rhizobia 
strains for V. sativa and C. mucunoides are Rhizobium etli 
SEMIA 384 and Bradyrhizobium japonicum BR 1602, 
respectively (Brasil 2011). However, not much is known 
about the symbiotic efficiency of these rhizobial strains 
under limiting conditions, such as those found in coal-
mining degraded soils. Hence, obtaining autochthonous 

and compatible rhizobial strains able to survive under 
these limiting conditions is of extreme importance to 
obtain potential inoculants that can be used under field 
conditions.

Therefore, the aim of this study was to characterize and 
assess the symbiotic compatibility and plant-growth pro-
motion abilities of rhizobial strains previously obtained 
from coal-mining degraded areas in the state of Santa Cata-
rina, using V. sativa and C. mucunoides as host plants.

Materials and methods

Rhizobial strains and leguminous plant species

This study tested 16 strains of rhizobia from the Soil 
Microbiology Laboratory Collection at the Federal Univer-
sity of Santa Catarina, isolated in October 2010 in an area 
degraded from coal extraction near the non-operational 
Indústria Carboquímica Catarinense—ICC, in Criciúma, 
SC, southern Brazil (28° 44′ 18.40″S, 49° 24′ 42.62″W). A 
soil sample, representative of the mining area, was chemi-
cally analyzed, exhibiting pH  (H2O) 3.8 and levels of trace 
elements (mg  kg−1) of 8.60, 17.3, 125 and 422 for As, Cd, 
Pb and Zn, respectively. These are all higher than standard 
levels for Brazil. Table 1 shows the tested strains previously 
assessed as able to establish symbiosis with leguminous 
trees (Moura et al. 2016).

In addition, strains SEMIA 384 (R. etli) and BR 1602 (B. 
japonicum) (Menna et al. 2006a, b) were also tested. Pseu‑
domonas sp. (UW4) and P. fluorescens (YsS6) (Li et  al. 
2000; Ali et  al. 2012) were used as positive controls for 
siderophore and ACC deaminase production, respectively.

Leguminous species investigated included Vicia sativa 
L. and Calopogonium mucunoides Desv. Each species was 
tested in independent experiments.

Table 1  Bacterial strains/isolates used in the study

Host species Isolate Trap species Origin

Mimosa scabrella Benth
(bracatinga)

UFSC-B1, UFSC-B2, UFSC-B3, UFSC-
B4, UFSC-B5, UFSC-B6

UFSC-B8, UFSC-B9, UFSC-B12
UFSC-B16, UFSC-B17

Vigna unguiculata
(Cowpea)

Criciúma (SC)

Mimosa bimucronata (DC) Kuntze
(maricá)

UFSC-M1, UFSC-M2
UFSC-M4, UFSC-M8
UFSC-M9

Vigna unguiculata
(Cowpea)

Criciúma (SC)

– SEMIA 384 (Rhizobium etli) Fepagro (RS)
– BR 1602 (Bradyrizhobium japonicum) Embrapa Agrobiologia (RJ)
– YsS6 (Pseudomonas fluorescens), UW4 

(Pseudomonas sp.)
Bernard Glick personal Collec-

tion, University of Waterloo, 
Canada
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Symbiotic efficiency

The experiment was conducted in Leonard jars (Vincent 
1970) in a greenhouse under natural lighting. V. sativa 
was grown from June to Aug 2013 (average temperarure 
16.8 °C) while C. mucunoides from March to May 2014 
(average temperature 22.3 °C) (Labclimagri, Metereologi-
cal Station from the Centro de Ciências Agrárias-UFSC). 
The experimental design was completely randomized, 
consisting of three replicates and 19 treatments. Treat-
ments were inoculated with each of the 17 strains tested 
(16 strains UFSC+ one recommended strain for each plant) 
and two non-inoculated controls (with and without mineral 
nitrogen) (52.535 mg N).

Seeds were disinfected with 70% alcohol for 30  s, fol-
lowed by 2% sodium hypochlorite for 2  min. Seeds were 
then rinsed ten times with sterile distilled water to remove 
residues, and germinated on Petri dishes with sterile paper 
film, maintained in a growth chamber at 28 °C for 24  h. 
Two pre-germinated seeds were placed in each Leonard 
jar containing 500 cm³ of a mixture of sterile sand and ver-
miculite in a 1:1 (v/v) ratio. The down part of the jars were 
filled with fourfold diluted sterile Hoagland and Arnon 
(1950) nutrient solution. Seeds were then inoculated with 
1 mL of the tested bacterial strain taken during the log 
growth phase  (108 cells  mL−1). The bacteria strains were 
cultured in YM medium (Vincent 1970). For the non-inoc-
ulated controls, 1 mL of sterile YM medium was added. 
After seeding, 2.0  cm layer of a sterile mixture of sand, 
chloroform, and paraffin (5:1:0.015) was placed in the jar to 
avoid contamination.

Solution levels were periodically refilled with sterile 
Hoagland and Arnon (1950) nutrient solution. After 60 
days, plants were harvested to assess number of nodules 
(NN), dry weight of nodules (DWN), shoot dry matter 
(SDM), root dry matter (RDM), N content (Tedesco et al. 
1995), and N accumulation in the shoots (N content times 
SDM). The symbiotic efficiency (SE) was calculated fol-
lowing Chagas-Junior et al. (2010).

In vitro evaluation of plant growth‑promoting 
characteristics

IAA (Indole‑3‑acetic acid) production

The bacterial IAA production ability was measured fol-
lowing the method described by Glickmann and Dessaux 
(1995). An aliquot of 1 mL of grown bacterial culture, at 
28 °C for 48 h at 135 rpm, previously adjusted to an opti-
cal density of 0.5 was used to inoculate 5 mL YM medium 
containing tryptophan (500 mg  mL−1). After 24 h of incu-
bation, 1 mL of each bacterial suspension was centrifuged 

SE = (Ntotal fixed − Ntotal without N∕Ntotal with N
− Ntotal without N) × 100.

at 3248×g for 15 min. Subsequently, 2 mL supernatant was 
mixed with 4 mL Salkowski’s reagent (Gordon and Weber 
1951), incubated in the dark for 25 min and the absorbance 
read  (OD535). The concentration of IAA in each sample 
was calculated based on a standard curve ranging from 0 to 
100 μg  mL−1 IAA (Sigma, China).

Phosphate solubilization

The bacterial phosphate solubilization activity was 
screened according to Son et al. [2014] in NBRIP medium. 
Three plates of NBRIP-CaP were inoculated with 20 μL of 
each isolate grown for 48 h in YM medium, and incubated 
at 28 °C for 14 days (Alikhani et al. 2006). The phosphate 
solubilization activity was determined by measuring the 
clearance zone (solubilization area) developed around the 
colony, compared to the colony diameter. The phosphate 
solubilization index (SI) was = (colony + clearance zone 
diameter)/colony diameter.

Siderophore production

Siderophore production was measured as described by 
Schwyn and Neilands (1987). This is a qualitative method 
where a positive reaction is indicated by a color change of 
the Chrome Azurol S (CAS) reagent from blue to orange. 
Around 20 μL of 48  h bacterial culture grown in King’s 
B medium (King et al. 1954) were spotted onto CAS agar 
plate (Alexander and Zuberer 1991) and incubated at 28 °C 
for 72 h.

ACC (1‑aminocyclopropane‑1‑carboxylate) deaminase 
activity

Bacterial cultures were grown for 48  h in YM medium, 
centrifuged at 10,000×g and washed twice with DF mini-
mal medium (Dworkin and Foster 1958), prior to a resus-
pension in DF minimal medium, with ACC final concen-
tration of 5 mM as the sole source of nitrogen. Cells were 
then incubated for 48 h at 28 °C and 135 rpm. After induc-
tion, ACC deaminase activity was measured based on the 
determination of α-ketobutyrate resulting from ACC cleav-
age by ACC deaminase, as described by Penrose and Glick 
(2003). The concentration of α-ketobutyrate in each sample 
was calculated based on a standard curve ranging from 0 to 
0.5 mmol  L− 1 α-ketobutyrate (Sigma, China) (Duan et al. 
2009).

16 S rDNA gene amplification and sequencing

Genomic DNA from three isolates forming nodules (UFSC-
M4, UFSC-M8 and UFSC M9) was extracted using the 
UltraClean Microbial DNA Isolation Kit (Mo Bio, Canada) 
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according to the manufacturer’s instructions. Isolates were 
identified by amplifying and partial sequencing the 16  S 
rDNA, using the universal primers 27F (5′-AGA GTT TGA 
TCC TGG CTC AG-3′) and 1492R (5′-GGT TAC CTT GTT 
ACG ACT T-3′) (Lane 1991) at the Genomic Division, Mac-
rogen Inc., Korea. The results of the 16 S rDNA sequence 
analysis were compared with registered sequences depos-
ited at GenBank using the NCBI Blast server (http://www.
ncbi.nlm.nih.gov). Sequences obtained in this study were 
submitted to GenBank and are available under the acces-
sion numbers KY488191, KY488192 and KY488193.

Statistical analysis

Data were submitted to analysis of variance (ANOVA), and 
means compared by the Scott-Knott test at p < 0.05 using 
R-project (Team R 2008). Values for N content and N accu-
mulation in the shoots were previously transformed into 
x1/2, and values for symbiotic efficiency into Log10 (x + 1).

Results

Isolates nodulation abilities

From the 16 rhizobia isolates tested (Table 1), only UFSC-
M8 and UFSC-M9 were able to form effective nodules 
with V. sativa. Nevertheless, those isolates were not able to 
form as many nodules as the reference strain R. etli SEMIA 
384 (Fig. 1a). Even though UFSC-M8 formed fewer nod-
ules, the NDW was 22% higher those of R. etli SEMIA 384 
(Fig. 1b). Moreover, UFSC-M8 average weight per nodule 
was higher than R. etli SEMIA 384, showing a greater nod-
ule development (data not shown). On the other hand, iso-
late UFSC-M9 formed less nodules with less weight when 
compared to UFSC-M8 and SEMIA 384 (Fig. 1b).

Only two of the 16 rhizobia isolates tested were able 
to form an effective symbiotic relationship with C. mucu‑
noides. Isolates UFSC-M4 and UFSC-M8 formed nodules, 
however, in lower extent when compared to the reference 
strain B. japonicum BR 1602 (Fig. 1c). Similar results were 
obtained in total NDW, with the reference strain presenting 
a better performance (Fig.  1d). UFSC-M4 and UFSC-M8 
formed the same number of nodules and had similar NDW. 
The NDW for BR 1602 was significantly higher than the 
average of UFSC-M4 and UFSC-M8.

Isolates growth promoting abilities

Isolates UFSC-M8, UFSC-M9 and SEMIA 384 signifi-
cantly enhanced the growth of V. sativa (Fig.  2a). The 

SDW was similar between treatments UFSC-M8 and 
SEMIA 384, and statistically higher than the treatment 
without N. UFSC-M9 showed lower SDW than UFSC-
M8 and SEMIA 384. However, it showed statistically 
higher SDW than all other inoculated treatments.

The RDW was significantly higher in plants inoculated 
with isolate UFSC-M8 in comparison to all other inocu-
lated treatments (Fig. 2b), suggesting a significant impact 
of this isolate in root development. When compared to 
SEMIA 384, isolate UFSC-M8 was able to increase RDM 
in about 33%. Isolate UFSC-M9 and SEMIA 384 were 
not able to increase RDW, presenting no differences with 
the treatment without nitrogen.

For C. mucunoides, reference strain BR 1602 increased 
biomass production when compared to all UFSC isolates 
tested. The average SDW value for the UFSC isolates was 
18 times lower than the treatment with nitrogen. Higher 
RDW and SDW were obtained for the treatment with N, 
followed by BR 1602. Increments in RDW were in the 
order of 788% for the treatment with nitrogen and 157% 
for strain BR 1602. Besides that, there were not signifi-
cant differences on RDW between the treatments inocu-
lated with the UFSC isolates and the treatment without 
nitrogen (Fig. 2d).

Strain characterization

Phosphate solubilization abilities were detected in 14 
isolates. Only isolates UFSC-B4 and UFSC-M4 were 
unable to solubilize phosphate, together with the refer-
ence strains R. etli SEMIA 384 and Bradyrhizobium sp. 
BR 1602. Isolates UFSC-B12, UFSC-M9 and UFSC-B17 
presented the highest ability to solubilize phosphate with 
SI of 7.07, 6.67 and 4.47, respectively (Table 2). Still, the 
majority of the isolates presented medium to low phos-
phate solubilization ability.

Siderophore production was detected in three out of 
the 16 isolates tested. Only isolates UFSC-M1, UFSC-
M4 and UFSC-M8 were able to produce siderophores. 
Reference strains R. etli SEMIA 384 and Bradyrhizobium 
sp. BR 1602 did not produced siderophores under the 
tested conditions.

IAA production was detected in all isolates and refer-
ence strains, ranging from 2.6 to 62.7 μg  mL−1. Isolates 
UFSC-B12 and UFSC-M9 produced high levels of IAA 
followed by R. etli SEMIA 384. The majority of the 
tested strains (72%, n = 13) produced IAA concentrations 
in the range of 10 to 40 μg  mL−1 (Table 2).

Only two isolates, UFSC-M4 and UFSC-M8, were 
able to use ACC as sole nitrogen source. An ACC deami-
nase activity of 2.43 and 1.64 μmol  mg−1 protein h−1 was 
detected for UFSC-M4 and USFC-M8, respectively.

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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Symbiotic efficiency

From the growth and N uptake (not shown) data, it was 
calculated the symbiotic efficiency for UFSC-M8, SEMIA 
384 and UFSC-M9 to V. sativa, with values of 147, 90 and 
31%, respectively. These values show an increased ability 
to promote growth and nutrition of V. sativa by the UFSC-
M8 and SEMIA 384 strains, whereas UFSC-M9 presented 
a less significant impact and efficiency. Only BR 1602 
strain presented symbiotic efficiency with C. mucunoides 
(61.77%).

Based on 16 S rDNA gene sequences, three isolates were 
able to nodulate legumes could be classified as belonging to 
two distinct orders, α-Proteobacteria and β-Proteobacteria. 
The α-Proteobacteria representatives belonged to 

Rhizobium and Curtobacterium, whereas β-Proteobacteria 
belonged to Burkholderia (Table 2). Isolates of Rhizobium 
sp. (UFSC-M8) and Curtobacterium sp. (UFSC-M9) were 
able to nodulate V. sativa, while isolates of Burkholderia 
sp. (UFSC-M4) and Rhizobium sp. (UFSC-M8) were able 
to nodulate C. mucunoides.

Discussion

To our knowledge, no other report on the isolation, char-
acterization and symbiotic performance of autochthonous 
rhizobia from coal mining areas is available in the cur-
rent literature. The majority of works related to coal min-
ing areas only report the bacterial diversity in the impacted 
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Fig. 1  Number of nodules (a, c) and nodule dry weight (b, d) in 
Vicia sativa and Calopogonium mucunoides inoculated with the 
rhizobial strains UFSC-M8, UFSC-M9 and the recommended strain 

SEMIA384, after 60 days of growth. Vertical bars represent the 
standard error of the mean (n = 3)
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soils (Quadros et  al. 2016; Zhan and Su 2011). In the 
present study, 16 rhizobial isolates were characterized 
and their symbiotic efficiency evaluated in V. sativa and 
C. mucunoides plants. Previous works performed in our 
laboratory demonstrated that these isolates nodulated V. 
unguiculata and some nodulated and promoted the growth 
of leguminous trees (Mimosa spp.) (Moura et  al. 2016). 
However, not much is known about their ability to promote 
the growth of herbaceous leguminous plants like V. sativa 
and C. mucunoides, which present an important role in the 
re-vegetation of degraded areas, especially due to its high 
biomass production, tolerance to high levels of acidity, and 

nitrogen concentrations (Seiffert et al. 1985; Calegari et al. 
1993). Results obtained in this work showed that only two 
isolates from our collection (UFSC-M8 and UFSC-M9) 
were able to efficiently nodulate V. sativa. In addition, two 
autochthonous rhizobial strains (UFSC-M4 and UFSC-M8) 
nodulated C. mucunoides, albeit, inefficiently. Curiously, 
V. sativa symbionts are often described as belonging to 
the Rhizobium etli group, while C. mucunoides symbionts 
mostly belong to the genus Bradyrhizobium (Menna et al. 
2006a, b; Brasil 2011). None of the isolates in our collec-
tion belongs to Bradyrhizobium, which might help explain 
the inability to efficiently nodulate and promote the growth 
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of C. mucunoides. In fact, Bala and Giller (2001) showed 
that multiple bacteria belonging to Rhizobium, Mesorhizo‑
bium and Sinorhizobium were unable to nodulate C. mucu‑
noides, suggesting, therefore, that C. mucunoides has a 
very restricted symbiotic host range.

Interestingly, the bacteria that nodulated belong to Bur‑
kholderia (UFSC-M4) and Curtobacterium (UFSC-M9). 
While species of Burkholderia have been described as effi-
cient symbionts of leguminous trees (Moulin et  al. 2001; 
Chen 2005; Taulé et  al. 2012), not much is understood 
about its nodulation abilities in different leguminous spe-
cies. Results obtained in this work show that Burkholderia 
strains that nodulate leguminous trees (Mimosa spp.) and V. 
unguiculata (Moura et al. 2016) can also nodulate C. mucu‑
noides. The bacterium species B. phymatum (STM 815), 
isolated from the root nodules of Machaerium lunatum 
(Moulin et al. 2001; Elliott et al. 2007), is able to form nod-
ules with a wide range of leguminous trees and Phaseolus 
vulgaris (Gyaneshwar et al. 2011; Liu et al. 2011). In addi-
tion, other B. phymatum strains have been isolated from the 
nodules of common bean in Morocco (Talbi et  al. 2010). 
Burkholderia tuberum is also able to form nodules with a 
wide variety of hosts (Barrett and Parker 2005; Gyanesh-
war et al. 2011). Overall, these results suggest that at least 

some Burkholderia strains possess the ability to form nod-
ules in a wide range of hosts, which might be extremely 
important for agricultural applications and for studies on 
the molecular mechanisms of nodule formation.

Remarkably, we found that isolate UFSC-M9, able to 
form nodules with V. sativa, belongs to Curtobacterium, 
a genus that has recently being known for promoting plant 
growth endophytically (Azevedo et  al. 2016; Sturz et  al. 
1998). This is the first report on the nodulation abilities 
of a Curtobacterium species. Other non-symbiotic bacte-
ria have also proven to form nodules with legume species. 
Ampomah and Huss-Danell (2011) suggest that the ability 
of Paenibacillus and Stenotrophomonas, two non-symbiotic 
bacteria, to form nodules on legumes was acquired by hori-
zontal gene transfer. This event has been described earlier 
for other bacteria, as presented by Wood et al. (2001) and 
Welch et al. (2002). It is possible that the dynamic behav-
ior of the symbiotic rhizobia genome allows them to adapt 
to a changing environment, such as the presence of a new 
legume at a given site (Barcellos et  al. 2007). Nodulation 
abilities have been described in at least fifteen Proteobac-
teria genera. Recent examples include Devosia, Ochrobac‑
trum, Methylobacterium and Phyllobacterium (Gyaneshwar 
et al. 2011; Oliveira-Longatti et  al. 2013). Further studies 

Table 2  Levels of IAA, PSI, 
ACCD, and siderophore by 
plant growth promoting rhizobia 
isolated from coal mining 
areas and strains recommended 
by Brazilian Ministery of 
Agriculture

IAA indole-3-acetic acid
PSI phosphate solubilization index
ACCD ACC deaminase
SID Siderophore
*Values followed by different letters in the same column for each consortium are statistically different 
according to the Scott Knott test (p < 0.05)

Isolate code (accession numbers) IAA (μg  mL−1) PSI ACCD SID

UFSC-B1 25.7 ± 6.5d* 2.43 ± 0.2 − −
UFSC-B2 15.7 ± 0.1f 1.97 ± 0.4 − −
UFSC-B3 22.0 ± 1.0e 1.88 ± 0.1 − −
UFSC-B4 26.9 ± 0.1d 0.0 ± 0.0 − −
UFSC-B5 14.9 ± 0.1f 1.63 ± 0.3 − −
UFSC-B6 21.9 ± 0.3e 1.87 ± 0.2 − −
UFSC-B8 20.3 ± 0.1d 1.62 ± 0.2 − −
UFSC-B9 19.4 ± 1.2f 2.08 ± 0.1 − −
UFSC-B12 62.7 ± 3.5a 7.07 ± 0.7 − −
UFSC-B16 14.4 ± 1.5f 1.93 ± 0.1 − −
UFSC-B17 39.9 ± 6.4c 4.47 ± 0.5 − −
UFSC-M1 15.5 ± 3.8f 1.48 ± 0.4 − +
UFSC-M2 12.4 ± 0.0f 1.35 ± 0.4 − −
UFSC-M4 (KY488191) 4.7 ± 3.4g 0.0 ± 0.0 + +
UFSC-M8 (KY488192) 33.4 ± 17.4e 1.68 ± 0.1 + +
UFSC-M9 (KY488193) 60.1 ± 2.6a 6.67 ± 0.3 − −
SEMIA 384 46.9 ± 0.0b 0.0 ± 0.0 − −
BR 1602 2.6 ± 0.7g 0.0 ± 0.0 − −
YsS6 nd nd + +
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are necessary to understand the molecular basis of the nod-
ulation abilities of Curtobacterium.

Despite forming fewer nodules than R. etli SEMIA 384, 
UFSC-M8 (Rhizobium sp.) presented the highest symbi-
otic efficiency upon inoculation with V. sativa. This isolate 
formed more developed nodules (with increased weight) 
when compared to SEMIA 384, suggesting that the high 
symbiotic efficiency of this isolate might be related to 
nodule development and not nodule number. Positive cor-
relations between nodule weight and total amount of fixed 
nitrogen have been previously described (Pereyra et  al. 
2015). Ferreira et al. (2012) showed that higher nodule dry 
weight was directly related to the ability to promote growth 
of five different leguminous plants. Curiously, UFSC-M8 
was able to induce root development in both V. sativa and 
C. mucunoides when compared to all other treatments. It 
is possible that UFSC-M8 not only promotes plant growth 
through its symbiotic features (nitrogen fixation), but also 
through other mechanisms. Even though the mechanisms 
for plant growth promoting capacity are not completely 
elucidated according to Ahemad and Kibret (2014), plant 
growth promoting rhizobacteria mediate plant growth by 
altering the microbial community in the rhizospheric niche 
through the production of various substances. By the tradi-
tional route, bacteria can provide necessary nutrients (N, P, 
essential minerals, enzymes) and/or modulate plant hormo-
nal levels. Alternatively, mechanisms such as the produc-
tion of IAA, ACC deaminase, siderophores, and the capac-
ity to solubilize phosphate mediate plant growth (Brígido 
and Glick 2015). These mechanisms have been primarily 
investigated in agricultural environments, while in other 
ecosystems, such as degraded environments, they are mini-
mally addressed (Timmusk et al. 2011).

In this respect, UFSC-M8 was able to synthesize IAA, 
produce ACC deaminase, siderophores, and solubilize 
phosphate. All these traits are known to play a significant 
role in plant-growth promoting capabilities (Glick 2014). 
For instance, IAA increases the rate of xylem and root 
development and initiates lateral and adventitious root for-
mation (Glick 2014). In addition, IAA plays an important 
role in the nodulation abilities of many rhizobial strains 
(Glick 2012). Nevertheless, IAA is known to induce plant 
ACC synthase, and consequently the levels of ethylene, the 
ACC plant precursor (Ma et  al. 2002). Ethylene regulates 
many plant developmental processes including root and 
shoot elongation and root nodule development (Stearns 
and Glick 2003). In addition, plants produce high levels 
of ethylene when facing stress conditions (stress ethylene), 
like those present in coal-mining areas, therefore lead-
ing to growth inhibition (Mayak et  al. 2004; Cheng et  al. 
2007). Bacteria that produce ACC deaminase are able to 
efficiently decrease plant ACC and, consequently, deleteri-
ous ethylene levels responsible for plant growth inhibition 

(Honma and Shimomura 1978). In general rhizobia produc-
ing ACC deaminase present increased nodulation abilities 
and plant-growth promoting abilities (Ma et al. 2003, 2004; 
Conforte et  al. 2010; Nascimento et  al. 2012a, b; Brígido 
et al. 2013). By producing both IAA and ACC deaminase, 
it is possible that UFSC-M8 is able to form more devel-
oped nodules. Nascimento et al. (2012c) showed that Mes‑
orhizobium ciceri LMS-1 formed more developed nodules 
in Cicer arietinum when expressing an exogenous ACC 
deaminase gene.

Bacterial siderophore production is another impor-
tant trait for impacted environments. This trait plays an 
important role in facilitating iron uptake in the host plant, 
increasing growth (Neilands 1995; Hider and Kong 2010). 
This mechanism is of extreme importance in contaminated 
soils (heavy metals, high acidity), where iron is not avail-
able for plant absorption due to the presence of other com-
peting metal ions (Burd et  al. 2000; Belimov et  al. 2005; 
Braud et al. 2006). In fact, it has been described that iron 
deficiency induces chlorosis and leaf abscission in plants 
growing in coal-mining areas (Imsande 1998; Ferreira 
et al. 2012). Hence, it is conceivable that siderophore and 
ACC deaminase-producing bacteria, such as Rhizobium sp. 
UFSC-M8, can increase plant iron uptake and reduce the 
negative effects of ethylene-induced stress.

Generally, soils possess high levels of phosphate. How-
ever, it its insoluble and not available for plant assimila-
tion (Khan et al. 2007). Therefore, bacteria that solubilize 
phosphate have the ability to promote plant growth in great 
extent by making phosphate available for plant uptake 
(Pradhan and Sukla 2005; Tao et  al. 2008; Marra et  al. 
2011).

Conclusions

Our results suggest that UFSC-M8 presents the potential 
to be used as an effective inoculant in coal-contaminated 
areas. By being naturally present in the local soil, we 
can postulate that this bacterium can be able to resist the 
stresses and increase the growth of leguminous plants like 
V. sativa, thus potentiating the re-vegetation of those areas 
with leguminous species. By presenting traits such as activ-
ity of ACC deaminase, siderophore production, and phos-
phate solubilization, this bacterium might have potential for 
plant-growth promoting abilities when compared to strains 
like the recommended R. etli SEMIA 384 that only pro-
duces IAA.
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